Methodus figurarum lineis rectis et curvis comprehensarum quadraturas determinandi / Authore Johannes Craige.
- Craig, John, -1731.
- Date:
- MDCLXXXV. [1685]
Licence: Public Domain Mark
Credit: Methodus figurarum lineis rectis et curvis comprehensarum quadraturas determinandi / Authore Johannes Craige. Source: Wellcome Collection.
30/62 (page 16)
![= VMxMC, id eft t? = y % q- c adeoque eft , Sc fa<fta divifione, lecundum jam re- cf K.= c+y ceptam Methodum, erit ^ = — a C C' c Quaerenda igitur eft Curva A GH, in qua fit- a a v . a v —— &Ci & per prob. pri- PM = —ri— c I X Cu V mum invenietur illam definiri hac xquatione —-— mcC f Ha2-f „ i • i , -]-— — & determinando, n, m, l, per c c- Prob. 2. erit n z. m = i, / = f, ac .2 a:qua- . - lay a-y 2 -a y' a‘y tio quaefita eft-- d-— = x2 unde —— ZC ]C' 2 2 eadem eft Hyperbola: Quadratura quam exhibuit Ce¬ lebris vir ISBcolam Mercator in lua Logarithmo-tech- nia, quamvis methodo ufus l'um ab illius plane di- versa. Confiderando aliam Hyperbola: proprietatem; ali- am etram illius Quadraturam inveniemus. Sic ergo in i j appofito fchemate S C L Hyperbola acqui- latera cujus centrum A Sc latus tranfverlum RS, ponatur AM = j, = KC , MC = ^, AR = AS](https://iiif.wellcomecollection.org/image/b30340524_0030.jp2/full/800%2C/0/default.jpg)