Popular treatises on science written during the Middle Ages, in Anglo-Saxon, Anglo-Norman, and English / Edited from the original manuscripts by Thomas Wright.
- Thomas Wright
- Date:
- 1841
Licence: Public Domain Mark
Credit: Popular treatises on science written during the Middle Ages, in Anglo-Saxon, Anglo-Norman, and English / Edited from the original manuscripts by Thomas Wright. Source: Wellcome Collection.
69/164 (page 49)
![Des hures xxx jurs demi hure en sun curs, Si’s volez assembler e pur duzze cunter Les jurs que entre sunt, par quei li an estunt, Treis .c. i truverez, seissante demaneis, E .vij. qui cunte les hures que apelum demures, .C. en i truverat e .xx. qui’s cunterat, E qui en voldrat jurs faire j ensemble atraire, Ben sacez en verte, si cum est espruve, .xx. q .iiij. hures sunt par quei li jur estunt, E qui tant i metrat, .v. jurz i truverat. Sh volez ensement faire le assemblement Des mies hurades qui sunt petizades, .Vi. en i truverez, ja plus n’en i verez, .xij. dimies hures, geo ne funt que .vj. hures, E issi faiterement par cest assemblement Serat li anz finiz, e de tut aempliz, Ceo dit Bede, e Gerland, e Turkil le vaillant. Et ore veez reisun, par quel entenciun Les .vj. hures i sunt, e que eles i funt. Par .iiij. feiees .vi. hures, 9eo funt .xx. e .iiij. hures, Dont nus faimes un jur par veir e senz pour A1 .iiijte. an par raisun, que nus bisexte apelum. E pur quei al .iiij. an plus que V terz an ? Ceo dirum par raisun, sulum m’entenciun, Que lores sunt alees les hures e passees, Dont nus le jur furmum que bisexte appellum. Ett ore mustrum reisun, pur quei bisexte ad nun. Pur 5eo que el kalender, q el meis de Feverer, Par deus faiees est cunted u sis [meis] est enbreved, E pur cest achaisun deus feiez .vi. l’apellum. each month as many—hours as thirty days and a half hour in its course,—if you will put them together and count for twelve—the days which are all together, by which the year is formed,—you will find there three hundred and sixty,—and seven, which counts the hours which we call remnant,—he who counts them will find a hundred and twenty,—and he who will make days of them and put them toge¬ ther,—know well in truth, as it is proved,—there are twenty-four hours by which the day is formed,—and he who will add as much, will find five days. If in like manner you will put together—the half-hours which are little,—you will find six of them, you will see no more,—twelve half-hours is but six hours,— and thus truly by this adding together,—will the year be finished and entirely com¬ pleted,—as says Bede, and Gerland, and the estimable Turkil.—And now you see the reason, for what object—the six hours are there, and what results from them. —By four times six hours, that makes twenty-four hours,—of which we make a day truly and without fear—in the fourth year rightly, which we call bissextus.—And why in the fourth year instead of the third year ?—This we will say in explanation, according to my understanding,—that then the hours are gone and past,—of which we form the day that we call bissextus. And now we will show cause why it is named bissextus.—Because in the calen¬ dar and in the month of February,—it is twice counted where it is shortened six months, (?)—and for this reason we call it twice six.—Now we will show the rea- E](https://iiif.wellcomecollection.org/image/b29292244_0069.jp2/full/800%2C/0/default.jpg)